

Irish Whale and Dolphin Group

IMP.act

Managing for Microplastics: A Baseline to Inform Policy Stakeholders

Intertidal sampling protocol

May 2019

Table of Contents

Intertidal sampling

PROJECT DETAILS	2
#1 COLLECTION	3
INTERTIDAL SEDIMENT SAMPLING	3
LABORATORY PROCESSING	4
MARINE LITTER SURVEY	5
SAMPLING SITE FORM	6
MATERIAL CHECKLIST	11
#2 APPENDIX (REFERENCES FOR SEDIMENTS AND MICROPLASTICS)	12
#3 REFERENCES	12

Project details

https://www.joaofrias.com/impact-project

IMP.act is a project funded by the Irish Research Council under the framework of the Marie Skłodowska-Curie Actions COFUND Collaborative Research Fellowships for a Responsive and Innovative Europe (CAROLINE) scheme (Ref. CLNE/2018/524)

Citation

Frias, J. (2019). Intertidal sampling protocol. https://doi.org/10.13140/RG.2.2.32410.06082

#1 Collection

Intertidal sediment sampling

Beaches are dynamic systems with ever-changing conditions and sampling for microplastics should take into consideration that high tide lines can be highly variable over relatively short periods of time. In order to account for this, monitoring surveys should be held, whenever possibly, <u>once per season</u> (spring, summer, autumn and winter). To define the sampling area, mark out a <u>100m transect in width</u>, parallel to the water edge (sea), using a measuring tape or similar and take note of the <u>GPS coordinates</u> on each side of the transect (Figure 1., A and B). This transect will define the sampling area i.e. from the shoreline (low tide, light grey, AC1) to the above the strand line (accumulation zone, dark grey, AC2). In Figure 1 the dark grey line represents the mean height of the spring tide line and the light grey line represents the low tide line. Please note that in many beaches this second tide line might not be always visible on the shore. If the second line does not exist, sample another area outside the accumulation zone.

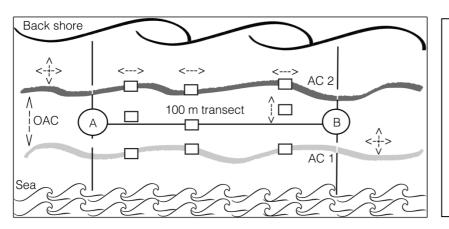


Figure 1 is a visual representative example of what could be draw in your datasheet.

The datasheet in the appendix provides an area for the surveyor to draw a representation of the beach on the day of the survey.

Figure 1 – Example of 100m transect (adapted from OSPAR, 2010 and NOAA, 2013) (AC – accumulation area, OAC – outside accumulation area)

The sampling design is stratified random so collect a minimum of 3 samples (represented by square areas in Figure 1) along a transect in each high tide line (AC1 and AC2). Make sure you also survey the area between the two high tide lines (OAC).

Mark your sampling unit (30 x 30 cm) using the measuring tape or a quadrat and record the GPS coordinates of each unit. Collect the top 5 cm (total volume of approximately 4,500 cm3 = 4.5 L) of sediment using a small metal shovel and ideally store the sample in labelled glass jars, previously decontaminated. Alternatively, they can be stored in labelled grip- or zip-lock bags. The label should include site name, date, time (if needed), and the code of the sample (AC1a, AC1b, AC1c, OAC1a, OAC1b, etc..). This method will allow to estimate concentration of microplastics both

horizontally and vertically, allowing collected data to be compared with a wide range of studies. Datasheets for this task can be found in the appendix (Form 1).

Laboratory processing

For citizen science purposes, make a sea salt (sodium chloride) saturated solution, as a density separation method. Seawater has an approximately salt concentration of 35 g L⁻¹ and the recommended concentration for this laboratory method is to use a 100 g L⁻¹ concentration. Introduce the sediment sample in a 1L glass beaker, add the saturated seawater solution and stir the solution for approximately 1 minute. Cover the solution with tinfoil to avoid airborne particles to go inside the solution. Wait approximately 20 mins to allow particles to deposit in the bottom. Some plastic polymers will have the tendency to float at the surface (see table A2 in the appendix).

Use a Buchner filtration system (figure 2) and appropriate filters (figure 3) to filter the solution. When dried, observe the filters under a microscope. Use the appropriate form below to register suspicious particles. Register if possible, type, shape, colour, number.

Figure 2 – Buchner filtration system with vacuum pump (credits: Merck Millipore)

Figure 3 – GF/C filters (credits: Fischer Scientific)

Marine litter survey

Once you have collected all the sediment samples from each quadrat and depending on your time availability or litter accumulation of the beach, you can conduct a marine litter survey to quantify and account of larger pieces of marine litter. One of the easiest measures that you can use in a citizen science project or if you are organising a voluntary beach clean-up is to consider collecting everything larger than a bottle cap (approximately 2.5 cm in diameter). In small groups of people (between 3 and 5), one person should be in charge of registering all items into the form. The easiest way to save time is for people to shout out what they are collecting into a large plastic bag. This way, all items will be quantified, and, in the end, you just need to weight the bags. For larger groups of people divide into smaller teams, have 1 person registering and 3 to 4 people collection. The person that is registering should do this tasks for the duration.

The most common marine litter categories can be seen in the specific form below in this document. For more details use the OSPAR report in the reference section, where these methods were adapted from.

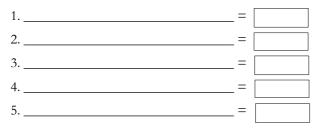
Forms

Sampling site form

Country	Location area	
Sampling site code	Beach name	
Date: / /	(dd/mm/yyyy) Sampling seas	son:
Start time::	_ AM PM End time:	:AM PM
Beach Characteristics		
Slope:	_(degrees) Beach length: _	(m)
Beach substrate : Sand	Gravel Boulder. Other	
Dune Substrate: Sand	Gravel Boulder. Other	
Atmospheric conditions:	Strong wind Rain Waves (strong	g, moderate, low):
Did any of the following atmospheric co	nditions affect OR prevent the sampling on this day ost	y?
	ost Fog Shiog Dust- of sand-so	in waves exceptionally high
GPS coordinates:	В	
AC1 <u>1.</u>	B	<u>3.</u>
AC2 <u>1.</u>	<u> </u>	3
		<u></u>
SAMPLING (according to sc	heme in page 3)	
k shore		1. Draw the high tide lines representing the main accumulation areas (AC1 and AC2);
		2. Mark starting point A and finis point B. These should have 100 of distance between them;
Y Y Y		3. Draw the squares where sampling was conducted. (For example see Fig. 1).
nments/Notes:		

Proximity to Presence of Industry To	Fishing facilities Marina Other:
	Tisining facilities Outer
Factors that might influence the presence of ma	rine anthropogenic litter:
Beach Clean-up activity: Event locally organised	by municipality civic movement/NGO.
How frequently is this beach cleaned? Annually	V Quarterly Bimonthly
Monthly Monthly	y 🗌 Weekly 🗌 Daily
Recent storms or extreme events. Which?	
Festivals or other events. Which?	
Impacts on marine fauna	
Did you find <u>dead</u> animals? No Yes. How	many:
Which species?	
#1	#3
#2	#4
Were the <u>dead</u> animals entangled in marine litter?	No Yes. How many:
Please provide more details on the entanglement:	
#1	#3
#2	#4
Name of surveyor	
Contact (e-mail):	@
Was marine litter collected in this activity?	No No
Notes:	

Date:/20	Filter observation form
Sample code	Filter no
Date of collection://20	Magnification x
Notes:	
Sample code Date of collection://20	
Notes:	


Date:/20	
Sample code	Filter no
Date of collection://20	Magnification x
Notes:	
Sample code Date of collection://20	Filter no Magnification x
Notes:	

Marine litter collection form

Note: The easiest way to mark the number of items is III HHH = 8 | Use the back of this form if more space is needed

Items most likely to be found:		
Cigarette filters:	= [
Cigarette lighters:	= [
Beverage bottles (plastic):	= [
Beverage bottles (glass):	=	
Beverage cans (metal):	= [
Bottle caps (plastic):	= [
Bottle caps (metal):	= [
Bags (plastic):	= [
Bags (paper):	= [
Straws (plastic):	= [
Cutlery (plastic):	= [
Plates and cups (plastic):	-	
Plates and cups (paper):	= [
Bottle caps Bottle caps (metal):	= [
Fishing buoys, pots and traps:		
Fishing nets and pieces:	=	
Fishing line and rope:	=	
Balloons:	=	
Condoms:	=	
Hygiene pads:	=	
Tampons/tampon applicators:	=	
Medical tablets:	=	
Hygienic wipes:	=	
Syringes:		
Tabaco wraps:	=	
Food wraps:	=	
Construction materials (including processed wood):	=	:

Items of local concern:

Metrics

Did you register the weight?	\square No \square Yes.
If so, how much:	_? 🗌 kg 🔲 lb
Distance cleaned?	km miles
How many people participate	d?

Material Checklist

- Sampling box
- Measuring tape
- Pencils
- Datasheets
- Labels
- Waterproof clipboards
- Photo camera / mobile phone
- GPS / mobile phone
- Metal shovel
- Zip-lock bags
- Permanent markers
- Personal safety equipment (Wellies and wet gear)
- Big plastic bags (25, 50 or 100L depending on the amount of beached litter)
- Gloves (gardening gloves are the recommended due to the thickness)
- U Weighing scale
- Transect sticks (3)
- Container for sharp objects
- metal quadrats (3)

#2 Appendix (references for sediments and microplastics)

-

Abbreviation	Polymer	CAS no.	Density (g cm ⁻³)
PS	Polystyrene	9003-53-6	0.01 - 1.06
РР	Polypropylene	9003-07-0	0.85 - 0.92
LDPE	Low-density polyethylene	9002-88-4	0.89 - 0.93
EVA	Ethylene Vinyl Acetate	24937-78-8	0.94 - 0.95
HPDE	High-density polyethylene	9002-88-4	0.94 - 0.98
PA	Polyamide	63428-84-2	1.12 - 1.15
PA 6,6	Nylon 6,6	32131-17-2	1.13 – 1.15
PMMA	Poly methyl methacrylate	9011-14-7	1.16 - 1.20
РС	Polycarbonate	25037-45-0	1.20 - 1.22
PU	Polyurethane	9009-54-5	1.20 - 1.26
PET	Polyethylene terephthalate	25038-59-9	1.38 - 1.41
PVC	Polyvinyl chloride	9002-86-2	1.38 - 1.41
PTFE	Polytetrafluoroethylene	9002-84-0	2.10 - 2.30

Table A1	Densities of common poly	mers (adapted from 1	Enders et al., 2015)	
Density limit using.	Sodium chloride and	odium tungstate dihu	drate and all above 1 40	σ

Polymers until the marked lines are retained by the solutions. Please note that this is a theoretical model and some polymers with higher densities could potentially be found in sediments even using a solution with density lower to 1.40 g cm⁻³.

Abbreviation	Polymer	Density (g cm ⁻³)	Buoyancy
PS	Polystyrene	0.01 - 1.06	Positive (\uparrow)
PP	Polypropylene	0.85 - 0.92	Positive (\uparrow)
LDPE	Low-density polyethylene	0.89 - 0.93	Positive (\uparrow)
HPDE	High-density polyethylene	0.94 - 0.98	Positive (\uparrow)
Seawater		1.025	
РА	Polyamide	1.12 – 1.15	Negative (↓)
PA 6,6	Nylon 6,6	1.13 – 1.15	Negative (\downarrow)
	· · · · · ·		

Table A2 – Buoyancy of common polymers (adapted from Crawford and Quinn, 2017)

1.16 - 1.20

1.20 - 1.22

1.20 - 1.26

1.38 - 1.41

1.38 - 1.41

2.10 - 2.30

Negative (\downarrow) Negative (\downarrow)

Negative (\downarrow)

Negative (\downarrow)

Negative (\downarrow)

Negative (\downarrow)

Polymer density might vary with additives added during production, and therefore this table is a theoretical model.

Poly methyl methacrylate

Polyethylene terephthalate

Polytetrafluoroethylene

Polycarbonate

Polyvinyl chloride

Polyurethane

Tables available at https://www.researchgate.net/publication/326552185

#3 References

PMMA

PC

PU

PET

PVC

PTFE

- 1. OSPAR (2010). Guideline for Monitoring Marine Litter on the Beaches in the OSPAR Maritime Area. ISBN: 90 3631 973 9. Available @ https://www.ospar.org/documents?v=7260
- 2. Frias *et al.*, (2018). Standardised protocol for monitoring microplastics in sediments. JPI-Oceans, published in ResearchGate. Available @ https://doi.org/10.13140/RG.2.2.36256.89601/1

Managing for Microplastics: A Baseline to Inform Policy Stakeholders

This project contributes to the following United Nations Sustainable Development Goals

May 2019

